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Abstract

Meta-Gaussian models are ubiquitous in the statistical literature. They
provide a flexible building block to represent non-Gaussian distributions
which inherit modeling and inference methods available in the Gaussian
framework. In particular they have been widely used for modeling rainfall
distributions. The first step when working with meta-Gaussian models
consists in choosing an appropriate transformation which allows to map
the Gaussian distribution to the target rainfall distribution. Many trans-
fer functions have been proposed in the literature but most of them are
not appropriate to describe heavy-tailed distributions, which is known to
be a usual feature for rainfall at sub-daily scales. In this context, we pro-
pose and study a new meta-Gaussian model that can handle heavy-tailed
observations. It leads to a four parameter model for which each param-
eter is linked to a different part of the distribution: a first one describes
the probability of rainfall occurrence, two of them are related to the lower
and upper tailed features of the distribution, and the last one is just a
scaling parameter. Theoretical arguments are given to justify the pro-
posed model. A statistical analysis of seven French rain gauges indicates
the flexibility of our approach under different climatological regions and
different aggregation times, here from six minutes to twenty four hours.
Our distribution outperforms other meta-Gaussian models that
have been proposed in the literature and, in particular, it
captures well heavier tail behaviours below the hourly scale.
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2 A meta-Gaussian distribution for sub-hourly rainfall

Keywords: Rainfall distribution, meta-Gaussian model, heavy-tailed
distributions

1 Introduction

Precipitation intensities and frequencies are key variables for many environ-
mental studies, not only in hydrology but also agronomy, meteorology and
impact studies (see e.g. [1], [2]). As a consequence, there is an abundant lit-
erature on the modeling of daily and monthly rainfall intensity distributions
at a single location. The most popular distribution for positive daily precip-
itation is probably the gamma distribution [3], which also generally provides
an adequate fit for precipitation at the monthly scale. Other distributions
have been proposed such as the mixed exponential [4], Weibull [5] and log-
normal [6]. Comparisons were made for specific data sets. For example, [7]
ranked the mixed exponential first and the gamma second whereas [8] ranked
the log-normal first, then mixed exponential, gamma and finally exponential.
The performance strongly depends on the location of interest as local climate
strongly impacts rainfall distribution.

The meta-Gaussian framework is the most usual strategy to construct mul-
tivariate models for rainfall distributions. The building block of this approach
is to link the phenomena of interest to a Gaussian distribution. A common
justification behind all these Gaussian based transformation techniques is that
the normal distribution represents a solid, simple and flexible building block
to construct multivariate models and handle for example space-time data [9].
Furthermore it allows to model simultaneously the occurrence (dry/wet mea-
surement) and amount of precipitation by censoring the Gaussian variable. As
a consequence, meta-Gaussian models have been widely used in the literature
on rainfall disaggregation [10-12], downscaling and model correction [13-15],
short term or spatial prediction [16, 17], building stochastic weather genera-
tors [18-20], data assimilation [21], post-processing precipitation forecasts [22]
or merging different data sources [23].

One key ingredient of meta-Gaussian model is the choice of an appropriate
transformation to map a Gaussian distribution into a a distribution relevant
to describe the phenomenon of interest. The most usual transformation in the
statistical literature is probably the Box-Cox transformation [24] which has
also been applied for rainfall [9, 23]. Other transformations have been pro-
posed for modeling rainfall specifically, such as the square root transformation
in [25], power transformations [18] or power exponential [12]. Another strategy
is to use a transformation based on cumulative distributions and quantile func-
tions, which maps the Gaussian distribution to a target distribution such as
the gamma distribution ([20]) or the mixed exponential distribution [26], but
this generally leads to transformations with relatively complicated analytical
expressions.
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A meta-Gaussian distribution for sub-hourly rainfall 3

A particular impetus for this work was the need to describe rainfall distri-
butions at fine time scales (a few minutes) in order to test the sensitivity and
robustness of an urban hydrological model in Brest (France). At sub-hourly
scales, rainfall measurements are frequently null (when no rain is measured)
and discrete due to rain gauge precision. Still, very few events with high inten-
sities strongly skew the density to the right, creating a heavy tailed distribution
which needs to be treated with care. The models described above do not pro-
duce heavy-tailed distributions and thus may not be appropriate for describing
sub-hourly precipitations. More generally, the statistical modeling of the dis-
tribution of rainfall accumulated over short time periods is little discussed in
the literature.

Extreme value theory promotes the use of the Generalized Pareto distri-
bution (GPD) for modeling exceedances over a high threshold [27, 28]. One
difficulty with this approach is that only exceedances above a high threshold
are modelled, not the full distribution. Hybrid distributions were proposed in
this context [29]. For example, [30] propose a meta-Gaussian model where a
Gamma distribution is used to describe low and moderate rainfall, i.e. rain-
fall below a fixed threshold, and the GPD is used to describe rainfall above
the threshold. However, finding the optimal threshold that allows the use of a
GPD for the exceedances remains a delicate task for the practitioner. Different
methods have been proposed to bypass the threshold selection step. In partic-
ular, [31] proposed the Extended GPD model. This leads to a flexible model
which can describe the full rainfall distribution range and handle heavy tails.
In contrast to a meta-Gaussian model, this approach is based on the uniform
distribution, not the Gaussian one. So, this may bring some complexity in
some types of extensions, see [32]. In addition, it does not handle dry events.

The main contribution of this paper is to propose a new meta-Gaussian
model which is simple but flexible enough to model the full rainfall distri-
butions accumulated over a wide range of time scales including dry, low and
heavy precipitations. The paper is organised as follows. The data sets that
will be used throughout the paper are introduced in Section 2. The proposed
model is introduced in Section 3, together with some theoretical justifications.
Section 4 discusses results obtained when fitting the model to the data. Finally
conclusions and perspectives are given in Section 5.

All the models discussed in this paper can be fitted with the R package
available on Github at https://github.com/mbtgy/tcG.

2 Data

In this study, we consider rainfall data recorded at 7 meteorological stations in
France represented on Figure 1. These data were provided by Météo-France.
They are available at a 6 minutes time step from 2010 until 2021 (12 years).
In order to remove seasonal components, a focus is made on the three months
of summer, i.e. June, July and August where the more intense convective


https://github.com/mbtgy/tcG

117

118

119

120

121

122

123

125

126

128

129

130

131

132

133

134

135

136

137

138

Springer Nature 2021 BTEX template

4 A meta-Gaussian distribution for sub-hourly rainfall
D p— T e Gt
Swansea:, Cardiff London Middelburg SindRaved
4 Southend:-
Bath on-Sea Brugge: X
Vioanderes Dasseldorf
Dunkerque: Siegan
Southampton Brighton Macher g
Exeter. i Bonn
Partsmauth Lille Belgie./
Plymotth Belgique / Koblenz

Belgien

Frankfi

Létzeblerg Ma
Guernsey, LeHavre pouen
Mannhe
Jersey, Noimandje by |1 Reims Saarbricken
Karlsruh
VILLACOUBLAY i
France Baden:
g sREST 3 ' STRASBOURG
([ sRes Troyes
Bl et Frelburg
2 oRennes im Breisgau

Le Mans

Belfart Basel

e mangers Zhricl

Besangan

Schwei
Suisse/Svi;
Lausanne S\iar:

France

Poitiers

Genéve
La Rachelle| Clermant- d
Limages Ferrand ne Annecy val
LYON 3

Chambéry, Mova
e Alpes -

Grenoble!

Bordeaux

§ Toulouse sy <M
uries / 1 Santander ™%, Bilbag

Vitoria-Gastei.

Marseille

A-EReon Barninnan

Fig. 1 Locations of our seven rain gauge Metep France stations in France with a six minute
time scale recording from 2010 to 2021 (summer months). Different sites correspond to
different climates. For example, the westernly climate in the Brittany peninsula strongly
differs from the drier southern Mediterranean one.

precipitation events generally occur. All the data were measured using tipping
bucket gauges with a 0.2 mm precision.

This work was triggered by the need of high resolution space-time data
which can be used as input of an urban hydrological model which describes
the sewage system of the city of Brest. One difficulty when trying to merge
the different sources of rainfall data available over a particular geographical
area such as the watershed of the city of Brest is that they are generally avail-
able at different time steps. For example, recent rain gauge typically provide
measures of the precipitation accumulated over 3 or 6 minutes, whereas his-
torical measurements are only available at the hourly or daily scale. Other
sources of data such as radar, satellite or model outputs may also be available
at other time resolutions. In such situation, it is useful to have a simple para-
metric model which can describe the distribution of precipitation at different
time resolutions ranging from a few minutes to daily data. We also consider
6 other stations, located in different climate zones (continental, mountainous
and Mediterranean), to check the flexibility of the proposed model.

Figure 2 shows that the temporal resolution has a strong influence on the
shape of the rainfall distribution in Brest. Obviously, the percentage of dry
records decreases with the duration over which rainfall is accumulated: for 6-
minutes data, the percentage of dry measurements is equal to 96.7% whereas
it drops to 31.6% for daily data. The empirical distribution of the 6-minutes
data (left panel) is highly skewed, with a majority of positive records being
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Fig. 2 Empirical distribution of rainfall accumulated over 6 minutes (left), 1 hour (middle)
and 1 day (right) in Brest. Dry measurements are not represented but the percentage of dry
measurements is indicated in the y-label.

equal to the 0.2 mm precision of the tipping bucket, but also high values corre-
sponding to intense convective events, which creates a heavy tail distribution.
The empirical distributions of hourly (middle panel) and daily (right panel)
rainfall are also skewed, but it is less pronounced than for 6-minutes data.

Also note that the 0.2 mm precision of the tipping bucket leads to a dis-
cretization of the (continuous) distribution of the rainfall. This discretization
is clearly visible when looking at the empirical distribution of the 6-minutes
rainfall data, whereas it becomes less prominent when looking at hourly or
daily data. This has to be taken into account when fitting the continuous model
introduced in the next section to the data (see Section 4.1).

To sum up, the goal is to develop a simple parametric model which can
describe the distribution of precipitation at different time scales, hence to have
a strongly skewed distribution with a discrete component in zero and the ability
to produce heavy tails. The next section discusses the choice of such model.

3 Model

3.1 Meta-Gaussian models

A classical approach for modeling rainfall, sometimes called meta-Gaussian
model, is to assume that rainfall amounts Y can be linked to a Gaussian
variable X with mean p and variance 1 according to

Y= ’(/J(X)]IXZO’ with X ~ N(Ma 1)7 (1)

where 1 : [0, +00[—]0, +00[ is an increasing function which is generally refereed
to as the anamorphosis in the literature and 1x>¢ is the indicator function
equal to 1 if condition X > 0 is true and 0 otherwise. The operation of such
model is schematised in Figure 3. The censorship in 0 produces dry conditions
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6 A meta-Gaussian distribution for sub-hourly rainfall

(step 1 in Figure 3) with a proportion linked to the mean of the Gaussian
according to

PY=0))=P(X<0)=2(—p)
where ® is the cumulative distribution function (cdf) of the standard normal
distribution. The transformation v acts on the positive part of the distribution
which corresponds to wet conditions (step 2 in Figure 3).

Latent Gaussian Censored Gaussian Precipitation

1

Censorship

2
Apply y

in zero R
il [t ] 1
—r T T i —T T
4 2 0 2 4 4 2 0 2 4 1 -4 2 0 2 4
EES

34

Density
00 05 1.0 15 20 25
Density
00 065 10 16 20 25
Density
00 05 1.0 15 20 25

0248

Fig. 3 Schematic functioning of a meta-Gaussian model. The coloured areas in the
histograms represent the part of the distribution modified at each step.

The cdf of the random variable Y defined by (1) can be written as

ro ={ 5" TR0 @

Remark that this meta-Gaussian model is general since any positive ran-
dom variable with a discrete component at the origin like precipitation can be
written as (1) using

U(x) = F1(®(z — p)) 3)
where = —®~1 (P(Y =0)) and F~! denotes the quantile function (general-
ized inverse function of the cdf F') of Y. Plugging a non-parametric estimate of
the quantile function F~! in (3) allows building non-parametric estimates of
), [? ]see, e.g.,ilien2013effective, cecinati2017comparing. The dots in Figure 4
show the estimate obtained on the 6-minutes rainfall data in Brest introduced
in Section 2. The shape of 1 near zero is linked to the small precipitations.
A horizontal tangent at the origin means that they are more low rainfall than
expected low values in the censored Gaussian distribution and the density
becomes more concentrated in 0 if 1) is flatter at the origin. The growth speed
is linked to the upper tail: the convex-exponential shape indicates that the tail
is heavier than a Gaussian one. However, parametric approaches are generally
favoured in the applications and many models have been proposed for ¥ in
the literature. The most classical one is probably the power transformation,
see [18] and [16],

() = 0w/, (4)
but other transformations have been proposed. [11] studied a quadratic power
function, [14] worked with a simple exponential transform and [12] focused on

U(z) = oa(exp(orzt/®) - 1). ()
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b6

Fig. 4 Non-parametric estimate of the anamorphosis function based on (3) (dots) for the
6-minutes data in Brest-Guipavas. The plain curve corresponds to the parametric model
(13) fitted to the data (see Section 4.1), and the dotted line is its 95% confidence interval
computed using 500 bootstrap samples.

To force the resulting distribution to match a specific distribution the inverse
of a cdf can also be used, as it is the case with the Gamma distribution in [20].

Transformation (4) being the most commonly used, it will be a point of
comparison and will be referred to as the classical meta-Gaussian model. Note
that it is closely related to the popular Box-Cox transformation [24].

3.2 Lower and upper tails of meta-Gaussian models

The choice of an appropriate anamorphosis function for a particular applica-
tion is typically a trade-off between model complexity, versatility, tractability
and interpretability. In this section, it is advocated that the properties of lower
and upper tails of the positive part of the rainfall distribution may also provide
interesting insights.

Different studies have shown that rainfall at daily or sub-daily scales are
generally heavy tailed [27]. In this situation, ¢ should be chosen such that the
transformed Gaussian variable defined by (1) is tail equivalent with a Pareto
distribution with positive shape parameter £. According to B, this holds true
if and only if

. x(x) 1

| _—

e Y(z) € (6)
i (x) £o?

Solving the differential equation o) = % leads to a first function z +— exp >3-
which satisfies (6). Then, by re-writting ¢ as

£
U(z) = exp - expu(z) (7)

- which is always possible - condition (6) becomes

I
lim u' (@)
xr—r00 x

=0.
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8 A meta-Gaussian distribution for sub-hourly rainfall

This condition seems easier to work with as it allows understanding that loosely
Speakmg, the anamorphosis function ¢ should increase ”like” the function
T exp s>~ when r — 400 to get heavy tailed distributions. In particular,
one can check that most of the anamorphosis found in the literature - including
the classical meta-Gaussian model (4) introduced previously - do not satisfy
condition (6). Hence, these transforms are not particularly well suited to model
heavy rainfall at small time scales. Interestingly, the model of [12] will be tail
equivalent to a Pareto distribution if and only if o = % in (5). The Tukey
g-and-h distribution, [33-35] [], defined as the random variable

X)—1 X2
eXP(gg ) exp 52 ,  with X ~ N(0,1)

with h and g real parameters, may not always satisfy condition (6). In addition,
it is not directly suited to include the dry event component at 0 and it lacks
flexibility to describe the shape of the lower part of the rainfall distribution
according to the discussion below.

Concerning non zero but low rainfall, [31] advocated, using arguments of
the extreme value theory, that the lower part of the distribution of the positive
amount should approximately follow a power-law, i.e. satisfy

lim M —C
yl0 ye

for some positive constant C' and shape parameter o > 0. In particular, the
often used Gamma distribution with shape parameter « satisfies this con-
straint. These authors proposed and studied different families that meet this
criterion. One can wonder if this constraint could also be enforced to the meta-
Gaussian model defined by (2). A first order Taylor expansion of F around
zero indicates that condition (6) holds true if and only if

1

P(x) = o= K(x) (8)

with K such that li?&K (x) exists and is strictly positive. Most of the
x

anamorphosis functions in the hydrological literature, including the classical
meta-Gaussian model (4) correspond to the particular case where K(z) is a
constant function, and consequently they obey this constraint on low rainfall
amount. Remark that the same parameter « in model (5) both controls the
shape of the distribution for low and heavy rainfall. This is an undesirable
property as is not impossible to create a heavy-tailed distribution with a power
shape parameter different from o = % for low rainfall.

3.3 Proposed model

According to the previous section, the anamorphosis ¥ should be chosen such
that conditions (6) and (8) are satisfied in order to obtain a Meta-Gaussian
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distribution with a Pareto upper tail and a lower tail that follows a power
law. Based on these results, this paper advocates the use of the anamorphosis

function )

P(z) = oTE exp % (9)
with 4 € R, 0 € R™, o € R™ and £ € R. The distribution of the random
variable Y defined through (1) with X ~ A (p,1) and ¢ given by (9) will be
referred to as the GP meta-Gaussian distribution with parameter (u, o, «,§).
w is directly related to the dry probability through (2) and o is a multiplicative
scale parameter. ¢ defined by (9) satisfies condition (8) and thus the lower tail
of the positive part of the distribution has a power shape with shape parameter
a. It also satisfy (6) and thus the upper tail distribution is controlled by the
shape parameter £. More precisely, if £ > 0, the distribution is tail equivalent
with a Pareto distribution with shape parameter £. It implies in particular
that E[Y?] = 400 if p > % The case £ = 0 corresponds to the classical
meta-Gaussian model (4). Negative values for £ creates an upper bound to
the distribution as for the GPD distribution. Indeed, when £ < 0, v is strictly

monotonic increasing only on the interval (0, z4,,) with

-1

o=\ g 1o
The GP meta-Gaussian distribution is thus defined by applying (1) with
given by (9) to the Gaussian variable X ~ N (p, 1) truncated at xg,;. Remind
that truncation means that values above z,, are not observed - unlike the
censorship that is used to create the dry component, where the observations
above the bound take the value of the bound. The support of the distribution
is [0, Ysup] With

1

671 2a
Ysup =@ (max(—af, O)>

the upper bound in the precipitation domain. Note that when & > 0 the bounds
become Z5,p = Ysup = +00, so those notations can be used for £ € R. When
the Gaussian is truncated above zg,,, the cdf (2) must be corrected by the
probability of truncation (see A).

An advantage of the GP meta-Gaussian transformation over other trans-
formations which satisfy (6) and (8) is the possibility to derive an analytical
expression for the inverse of v

v y) = \/ aifw (af (§)2a> (11)

where W denotes the Lambert W function [34] defined as the inverse of the
function z — xlogx. Note that the Lambert W function is available in usual
statistical software which simplifies practical implementation of the model.




190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

Springer Nature 2021 BTEX template

10 A meta-Gaussian distribution for sub-hourly rainfall

— 0=05,§=05
- a=0.2,£=0.5
0=1.5, §=0.5

density
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density
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Fig. 5 Probability density function of the GP meta-Gaussian distribution for different
parameter values. All the plots were obtained with = 0 and o = 1. The left panel shows
the influence of £ and the right panel the influence of a. The vertical dotted line on the
left plot corresponds to the upper bound ysup of the distribution with £ = —0.1. Only the
positive part of the distribution is shown.

In particular, analytical expressions for the cdf and the probability density
function (pdf) of the GP meta-Gaussian model can be derived from (2). This
simplifies the computation of the likelihood function and the fitting the model
to data (see Section 4.1 for more details). Analytical expressions for the finite
moments can also be derived, which is not the case for many meta-Gaussian
models that can be found in the literature (to the best of our knowledge the
classical transform (4) is the only other meta-Gaussian model with analytical
moments). Expressions for the pdf, cdf, quantile function and moments of the
GP meta-Gaussian model can be found in A.

Figure 5 illustrates the flexibility of the GP meta-Gaussian distribution
with different parameter values. The distribution with 4 =0, 0 =1, « = 0.5
and £ = 0.5 is used as a reference since it corresponds to typical parameters
values for the rainfall data considered in this study. The left panel shows that
the parameter £ influences the upper tail of the distribution whereas o modifies
the shape of the distribution for low rainfall (see right panel) as expected from
the theory.

4 Numerical results

4.1 Parameter estimation

This section describes the method used to fit the model introduced in the
previous section to the data. As discussed in Section 2 (see also Figure 2) the
functioning of a tipping bucket induces a discretizaion of the data which needs
to be taken into account.
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For that, we assume that
P(N=n)=Pn<Y <n+9) (12)

where Y is the (not observed) continuous rainfall, N represents the (observed)
discrete measurement with values in {0, 4,24, ...} and § denotes the precision
of tipping bucket, i.e. 0.2 mm for our data sets.

Applying (12) with n = 0 gives

P(N =0) = P(Y < 6)

and thus with the anamorphosis (9) the probability of having a dry mea-
surement depends not only on g but also on the parameters {o, a, £} of the
anamorphosis function. This creates additional dependence between the differ-
ent parameters and complicates the interpretation of the parameters. In order
to get round this difficulty, the definition of v is modified as follows

Y(x) =0+ oTw exp % (13)

Note that 1! and Ysup are consequently modified. We found that the intro-
duction of § in the anamorphosis function greatly improves the results obtained
when fitting the model to the data sets considered in this study.

In order to fit the GP meta-Gaussian model, the maximum likelihood
approach is used in this study. When fitting a continuous distribution model
to rain gauge data, the likelihood is usually computed directly from the con-
tinuous density. However it has been noticed that taking into account the
discretization significantly improves the results. More precisely, the discrete
log likelihood which is maximised is based on (12)

log £(9) = nolog(®(—p)) + 3 log {F(ni+9) — F(ny)}  (14)

:m; >0

where ng is the number of dry measurements, (n1,...,n,) the rainfall data,
0 = (u, @, 0,&) the unknown parameter and F' the cdf of the distribution of ¥
(which depends on ).

We found that the maximum likelihood estimates (MLE) obtained by max-
imising (14) over 6 leads to estimates of o , o and ¢ which are strongly
correlated together. The dependence between the estimates of o and £ is not
surprising since it is well known that a similar behaviour occurs for the GPD
distribution: the MLE of the scale and shape parameters are strongly depen-
dent (see e.g. [36] and references therein). We also found a strong dependence
between the MLE of a and o, even when fitting the classical model (4) where
& = 0. This is especially true when fitting the model to rainfall data at a sub-
hourly time-step: the discretization has a strong impact (see Figure 2) and
this may complicate the estimation of the lower-tail shape parameter «. The
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existence of this dependence between the different estimates complicates the
interpretation of the results. A usual method to overcome this problem (see e.g.
[37]) is to add a penalty term in the likelihood. After some experimentation,
we chose to maximise the following penalised log-likelihood function

~(a— 0.5)2

log £(0) = logL(6) 5

T

It favours estimates with a shape parameter « close to 0.5 and the hyperparam-
eter 7 controls the strength of the penalty. In the numerical results reported
below, the value 72 = 0.001 is used.

4.2 Results

In order to assess the flexibility and interpretability of the proposed GP Meta-
Gaussian model, it was fitted to the rainfall data at the 7 meteorological
stations represented on the map of Figure 1. For each of these stations, differ-
ent temporal resolutions varying from 6-minutes to one day were considered,
where lower resolution data are obtained by accumulating 6-minutes data over
a longer time interval. In order to reduce the short-term temporal dependence
in the data sets, one observation every k observations was retained for the
analysis. The value of k£ depends on the time step between successive observa-
tions, ranging form k£ = 10 for 6-minutes data, to k = 5 for 12-minutes data,
k = 2 for 30-minutes data, and k = 1 if the time step is larger than 1 hour.

Figure 6 shows quantile-quantile plots for the fitted GP meta-Gaussian
model at various time resolutions (6 minutes, 30 minutes, 1 hour and 1 day) for
the 7 stations. The global fit of the model is very satisfying at all stations and
time resolutions, except maybe for the smaller time steps in Lyon where the
fitted model has difficulties in explaining the largest observation. It shows that
the model is flexible enough to reproduce rainfall distributions for a variety of
climates and temporal resolutions.

The classical meta-Gaussian model with power transformation (4) was
also fitted to the data for comparison. Remind that this model is a partic-
ular case of the GP meta-Gaussian model when the upper-tail parameter £
is assumed to be equal to 0. The resulting quantile-quantile plots are super-
imposed on Figure 6. The fits are generally less satisfactory than with the
GP meta-Gaussian model, in particular regarding the upper-tail of the dis-
tribution where the power transformation leads to an underestimation of the
largest quantiles. This is not surprising since we know from the results given
in Section 3.2 that it is not possible to produce heavy-tailed distributions with
this model whereas rainfall data generally have heavy tails.

Figure 7 shows the evolution of the model parameters with time resolu-
tion (note that the time axis is non linear). The evolution of the parameters
is generally smooth. p is increasing with aggregation, which is expected as
there are less and less dry measurements when the period over which rainfall is
accumulated increases. The estimate of the scale parameter o is also generally
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Fig. 6 Quantile-quantile plots for the GP (9) (blue) and power (4) (grey) meta-Gaussian
models fitted to the rainfall data. Each column corresponds to a different time resolution
and each row to a meteorological station. The light area gives (pointwise) 95% intervals
based on 500 non parametric bootstrap replicates.
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increasing, which is expected with the sum of (positively correlated) random
variables. Remark however that there are some exceptions (e.g. Brest for larger
time resolution) which may be due to the correlation between the estimates
of o and the other parameters. As concerns the upper tail parameter £, we
generally obtain positive values (i.e. heavy-tailed distributions) but the evolu-
tion with time resolution seems to be site-dependent. For Nimes, Villacoublay,
Strasbourg and Lyon (top panels of Figure 7), the estimated tail parame-
ter ¢ is relatively high for 6-minutes data and then decreases when rainfall
is accumulated over longer time intervals. This is coherent with the intuition
that summing random variable will tend to ”gaussianize” them and produce
distributions with lighter tails. However, for Nice, Montaigoual and Brest, a
different behaviour is observed: the estimated tail parameter £ is smaller for
6-minutes data and does not clearly decrease with the time resolution. The
evolution of the lower tail parameter « is also site dependent. At some stations
(Lyon, Strasbourg, Nimes, Villacoublay and Brest) it tends to increase and
then decrease with a maximum value reached for hourly data, whereas it is the
opposite at Montaigoual. Remind that lower values of a lead to a distribution
which is more more ”peaky” at the origin. The explanation behind this tempo-
ral evolution is not straightforward. The rainfall accumulated over a given time
period is the sum of a random number (because of the dry measurements) of
correlated (because of the temporal dependence) random variables and hence
it may have a complicated behaviour. It thus depends on the climate of the
different stations, the characteristics of the rainy events in terms of intensity
and duration impacting the distribution of the accumulated rainfalls.

5 Conclusions and perspectives

In this work, we propose a new meta-Gaussian distribution with four parame-
ters that can handle heavy-tailed data with a discrete component at the origin.
The proposed GP meta-Gaussian model is tractable and analytical expressions
exist for the pdf, cdf, quantile function and for the moments.

It was found that the model is flexible enough to describe the distribution
of rainfall over a variety of climates and time resolutions. Comparison with a
classical meta-Gaussian model shows what the proposed transform brings to
this class of models: a better fit at small time scales due to its capacity to pro-
duce heavy tails. The GP meta-Gaussian model is quite similar to the extended
GP model [31] in terms of construction but also in terms of performance. The
advantage of the meta-Gaussian model is its direct link with a Gaussian vari-
able that allows the use of methods developed for Gaussian data (multivariate,
spatiotemporal models, Kalman-like algorithm, etc.) and also the possibility
to easily include the discrete component associated to dry conditions.

It was also found that the parameters of the model evolves smoothly
with temporal resolution. This could be useful for example to extrapolate the
parameters and thus ”estimate” the distribution of the rainfall at unobserved
time resolution. However, much works remain to be done to understand how
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the data at various
time resolution. Each column corresponds to a different parameter of the GP meta-Gaussian
and each row to a meteorological station. The boxplots are based on 500 non parametric
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the temporal dynamics of the dry and rainy events impacts the distribution
of the rainfall accumulated at different temporal resolutions. This will be the
topic of future work, with the aim to derive a temporal model compliant with
the properties of rainfall at different time scales. Another possible extension
is to adapt this meta-Gaussian distribution to spatial rainfall structures, in
particular to improve regional frequency analysis, see e.g. [38] and [39].

Appendix A Some Theoretical Properties of
the GP Meta-Gaussian
Distribution

The density, cdf and quantile function of a meta-Gaussian model as defined in
(1) are
-1 "t ify>0
f(y) —cx {¢# (1/} (y))/dj (1/} (y)) Yy

3,(0) ify=0"
Du(~'(y) ify >0
F(y):cx{@#(()) ! ifz:O’
1 _ w(@;l(u/c)) if u> ®,(0)
d (“)_{0 if u=®,(0) ’

with ¢, and ®,, denoting respectively the pdf and cdf of a normal distribution
with mean p. ¢ is the normalisation constant that deals with the probability
of truncation when £ < 0 with the GP meta-Gaussian transform. Hence ¢ = 1
for the classical transform (4), and for the GP meta-Gaussian transform
(9) ¢ = 1/®,,(xsup), With x4, the upper bound in the Gaussian domain as
defined in (10).

An explicit expression of the moments was found for the GP meta-Gaussian
distribution when £ > 0. Let us write Y the wet measurements.

1 oo

Var(i— () Jo
O_p 2 +oo o
~ V- an) P () [ e {15 e

By identification in [40] (eq. 3.462.1, page 365), with v = —u, v — 1 = p/«
and = (1 —¢p)/2,

E(YD) = (@ exp {0 - 2 ds

BT = 2 ?ff)éfi;) exp {”; (M - 1) } r(2 1) Doery <_

I' is the Gamma function and D, can be expressed with Kummer’s confluent
hypergeometric function of first kind [40], eq. 9.240, page 1028. This expression
is valid if —a < p < 1/€.
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Appendix B Pareto Tail for Meta-(Gaussian
Models

Proposition 1. Let Z be any positive absolutely continuous random variable
with pdf fz and with a Pareto survival function Fz. Let X be any standard-
ized normal distributed random variable, and let us define the positive random
variable

Y £ 4(X),

where % means equality in distribution and (.) represents a continuous and
increasing function from the real line to [0,00). The two random variables Z
and Y are tail-equivalent if and only if

lim z¥(x) 1 (B1)

) €

where & corresponds the common positive GP shape parameter of Z.

Proof of Proposition 1: Let ¢ and ® denote respectively the pdf and
survival function of a standard normal distribution X.
Recall that Z and Y are tail-equivalent, if and only

Fz(y)
—== =€ (0,00),
y—oo PIY > y] (0, 0)
This condition is satisfied if they have the same tail index. Assuming a Pareto
tail with positive shape parameter £ for Z implies that Z is regularly vary-
ing with index 1/¢. Proposition A.3.8(b) from [41] recalled that this regular
variation type is equivalent to

lim 2XJ1zi2) J2(%) = 1
Z—00 FZ(Z) 5

Hence, to show that Y and Z are tail equivalent, one needs to determine under
which condition it can be written that

lim 2% F(2) 1
z—00 Fy(z) f

where f and F denote the pdf and survival function of Y, respectively.
By construction, the survival function of Y equals to

Fy(z) =P[X > 97 (2)] =3 [ '(2)]

The density of Y is
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18 A meta-Gaussian distribution for sub-hourly rainfall

Then one can write

X f(z) _ 2 b-1(2) % (-1 (=) x ¢ [y~ (2)]
el UG R CC)) (w—wz)w—l(z)})'

Mill’s ratio [41] tells us that the ratio in the last bracket goes to one as 1) ~!(z)
goes to oo (i.e. as z grows). Hence, the condition

lim (z x p1(z) x (z/rl(z))’) . (B2)

Z—00

is equivalent to
zx f(z) 1

This is equivalent to have tail equivalence between Z and Y.

Changing variables with z = 9 (z), * = ¥~!(z) and (w_l(z))/ = dzx/dz,
condition (B2) is equivalent to condition (B1).

This is the necessary and sufficient condition on (.) to build a Pareto
random variable of tail index £ from a standardized normal random variable
X.
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