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Abstract11

Meta-Gaussian models are ubiquitous in the statistical literature. They12

provide a flexible building block to represent non-Gaussian distributions13

which inherit modeling and inference methods available in the Gaussian14

framework. In particular they have been widely used for modeling rainfall15

distributions. The first step when working with meta-Gaussian models16

consists in choosing an appropriate transformation which allows to map17

the Gaussian distribution to the target rainfall distribution. Many trans-18

fer functions have been proposed in the literature but most of them are19

not appropriate to describe heavy-tailed distributions, which is known to20

be a usual feature for rainfall at sub-daily scales. In this context, we pro-21

pose and study a new meta-Gaussian model that can handle heavy-tailed22

observations. It leads to a four parameter model for which each param-23

eter is linked to a different part of the distribution: a first one describes24

the probability of rainfall occurrence, two of them are related to the lower25

and upper tailed features of the distribution, and the last one is just a26

scaling parameter. Theoretical arguments are given to justify the pro-27

posed model. A statistical analysis of seven French rain gauges indicates28

the flexibility of our approach under different climatological regions and29

different aggregation times, here from six minutes to twenty four hours.30

Our distribution outperforms other meta-Gaussian models that31

have been proposed in the literature and, in particular, it32

captures well heavier tail behaviours below the hourly scale.33

1



Springer Nature 2021 LATEX template

2 A meta-Gaussian distribution for sub-hourly rainfall

Keywords: Rainfall distribution, meta-Gaussian model, heavy-tailed34

distributions35

1 Introduction36

Precipitation intensities and frequencies are key variables for many environ-37

mental studies, not only in hydrology but also agronomy, meteorology and38

impact studies (see e.g. [1], [2]). As a consequence, there is an abundant lit-39

erature on the modeling of daily and monthly rainfall intensity distributions40

at a single location. The most popular distribution for positive daily precip-41

itation is probably the gamma distribution [3], which also generally provides42

an adequate fit for precipitation at the monthly scale. Other distributions43

have been proposed such as the mixed exponential [4], Weibull [5] and log-44

normal [6]. Comparisons were made for specific data sets. For example, [7]45

ranked the mixed exponential first and the gamma second whereas [8] ranked46

the log-normal first, then mixed exponential, gamma and finally exponential.47

The performance strongly depends on the location of interest as local climate48

strongly impacts rainfall distribution.49

The meta-Gaussian framework is the most usual strategy to construct mul-50

tivariate models for rainfall distributions. The building block of this approach51

is to link the phenomena of interest to a Gaussian distribution. A common52

justification behind all these Gaussian based transformation techniques is that53

the normal distribution represents a solid, simple and flexible building block54

to construct multivariate models and handle for example space-time data [9].55

Furthermore it allows to model simultaneously the occurrence (dry/wet mea-56

surement) and amount of precipitation by censoring the Gaussian variable. As57

a consequence, meta-Gaussian models have been widely used in the literature58

on rainfall disaggregation [10–12], downscaling and model correction [13–15],59

short term or spatial prediction [16, 17], building stochastic weather genera-60

tors [18–20], data assimilation [21], post-processing precipitation forecasts [22]61

or merging different data sources [23].62

One key ingredient of meta-Gaussian model is the choice of an appropriate63

transformation to map a Gaussian distribution into a a distribution relevant64

to describe the phenomenon of interest. The most usual transformation in the65

statistical literature is probably the Box-Cox transformation [24] which has66

also been applied for rainfall [9, 23]. Other transformations have been pro-67

posed for modeling rainfall specifically, such as the square root transformation68

in [25], power transformations [18] or power exponential [12]. Another strategy69

is to use a transformation based on cumulative distributions and quantile func-70

tions, which maps the Gaussian distribution to a target distribution such as71

the gamma distribution ([20]) or the mixed exponential distribution [26], but72

this generally leads to transformations with relatively complicated analytical73

expressions.74



Springer Nature 2021 LATEX template

A meta-Gaussian distribution for sub-hourly rainfall 3

A particular impetus for this work was the need to describe rainfall distri-75

butions at fine time scales (a few minutes) in order to test the sensitivity and76

robustness of an urban hydrological model in Brest (France). At sub-hourly77

scales, rainfall measurements are frequently null (when no rain is measured)78

and discrete due to rain gauge precision. Still, very few events with high inten-79

sities strongly skew the density to the right, creating a heavy tailed distribution80

which needs to be treated with care. The models described above do not pro-81

duce heavy-tailed distributions and thus may not be appropriate for describing82

sub-hourly precipitations. More generally, the statistical modeling of the dis-83

tribution of rainfall accumulated over short time periods is little discussed in84

the literature.85

Extreme value theory promotes the use of the Generalized Pareto distri-86

bution (GPD) for modeling exceedances over a high threshold [27, 28]. One87

difficulty with this approach is that only exceedances above a high threshold88

are modelled, not the full distribution. Hybrid distributions were proposed in89

this context [29]. For example, [30] propose a meta-Gaussian model where a90

Gamma distribution is used to describe low and moderate rainfall, i.e. rain-91

fall below a fixed threshold, and the GPD is used to describe rainfall above92

the threshold. However, finding the optimal threshold that allows the use of a93

GPD for the exceedances remains a delicate task for the practitioner. Different94

methods have been proposed to bypass the threshold selection step. In partic-95

ular, [31] proposed the Extended GPD model. This leads to a flexible model96

which can describe the full rainfall distribution range and handle heavy tails.97

In contrast to a meta-Gaussian model, this approach is based on the uniform98

distribution, not the Gaussian one. So, this may bring some complexity in99

some types of extensions, see [32]. In addition, it does not handle dry events.100

The main contribution of this paper is to propose a new meta-Gaussian101

model which is simple but flexible enough to model the full rainfall distri-102

butions accumulated over a wide range of time scales including dry, low and103

heavy precipitations. The paper is organised as follows. The data sets that104

will be used throughout the paper are introduced in Section 2. The proposed105

model is introduced in Section 3, together with some theoretical justifications.106

Section 4 discusses results obtained when fitting the model to the data. Finally107

conclusions and perspectives are given in Section 5.108

All the models discussed in this paper can be fitted with the R package109

available on Github at https://github.com/mbtgy/tcG.110

2 Data111

In this study, we consider rainfall data recorded at 7 meteorological stations in112

France represented on Figure 1. These data were provided by Météo-France.113

They are available at a 6 minutes time step from 2010 until 2021 (12 years).114

In order to remove seasonal components, a focus is made on the three months115

of summer, i.e. June, July and August where the more intense convective116

https://github.com/mbtgy/tcG
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Fig. 1 Locations of our seven rain gauge Metep France stations in France with a six minute
time scale recording from 2010 to 2021 (summer months). Different sites correspond to
different climates. For example, the westernly climate in the Brittany peninsula strongly
differs from the drier southern Mediterranean one.

precipitation events generally occur. All the data were measured using tipping117

bucket gauges with a 0.2 mm precision.118

This work was triggered by the need of high resolution space-time data119

which can be used as input of an urban hydrological model which describes120

the sewage system of the city of Brest. One difficulty when trying to merge121

the different sources of rainfall data available over a particular geographical122

area such as the watershed of the city of Brest is that they are generally avail-123

able at different time steps. For example, recent rain gauge typically provide124

measures of the precipitation accumulated over 3 or 6 minutes, whereas his-125

torical measurements are only available at the hourly or daily scale. Other126

sources of data such as radar, satellite or model outputs may also be available127

at other time resolutions. In such situation, it is useful to have a simple para-128

metric model which can describe the distribution of precipitation at different129

time resolutions ranging from a few minutes to daily data. We also consider130

6 other stations, located in different climate zones (continental, mountainous131

and Mediterranean), to check the flexibility of the proposed model.132

Figure 2 shows that the temporal resolution has a strong influence on the133

shape of the rainfall distribution in Brest. Obviously, the percentage of dry134

records decreases with the duration over which rainfall is accumulated: for 6-135

minutes data, the percentage of dry measurements is equal to 96.7% whereas136

it drops to 31.6% for daily data. The empirical distribution of the 6-minutes137

data (left panel) is highly skewed, with a majority of positive records being138
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Fig. 2 Empirical distribution of rainfall accumulated over 6 minutes (left), 1 hour (middle)
and 1 day (right) in Brest. Dry measurements are not represented but the percentage of dry
measurements is indicated in the y-label.

equal to the 0.2 mm precision of the tipping bucket, but also high values corre-139

sponding to intense convective events, which creates a heavy tail distribution.140

The empirical distributions of hourly (middle panel) and daily (right panel)141

rainfall are also skewed, but it is less pronounced than for 6-minutes data.142

Also note that the 0.2 mm precision of the tipping bucket leads to a dis-143

cretization of the (continuous) distribution of the rainfall. This discretization144

is clearly visible when looking at the empirical distribution of the 6-minutes145

rainfall data, whereas it becomes less prominent when looking at hourly or146

daily data. This has to be taken into account when fitting the continuous model147

introduced in the next section to the data (see Section 4.1).148

To sum up, the goal is to develop a simple parametric model which can149

describe the distribution of precipitation at different time scales, hence to have150

a strongly skewed distribution with a discrete component in zero and the ability151

to produce heavy tails. The next section discusses the choice of such model.152

3 Model153

3.1 Meta-Gaussian models154

A classical approach for modeling rainfall, sometimes called meta-Gaussian
model, is to assume that rainfall amounts Y can be linked to a Gaussian
variable X with mean µ and variance 1 according to

Y = ψ(X)1X≥0, with X ∼ N (µ, 1), (1)

where ψ : [0,+∞[→]0,+∞[ is an increasing function which is generally refereed
to as the anamorphosis in the literature and 1X≥0 is the indicator function
equal to 1 if condition X ≥ 0 is true and 0 otherwise. The operation of such
model is schematised in Figure 3. The censorship in 0 produces dry conditions
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(step 1 in Figure 3) with a proportion linked to the mean of the Gaussian
according to

P (Y = 0) = P (X ≤ 0) = Φ(−µ)

where Φ is the cumulative distribution function (cdf) of the standard normal155

distribution. The transformation ψ acts on the positive part of the distribution156

which corresponds to wet conditions (step 2 in Figure 3).157

Fig. 3 Schematic functioning of a meta-Gaussian model. The coloured areas in the
histograms represent the part of the distribution modified at each step.

The cdf of the random variable Y defined by (1) can be written as

F (y) =

{
Φ(ψ−1(y)− µ) if y > 0
Φ(−µ) if y = 0

. (2)

Remark that this meta-Gaussian model is general since any positive ran-
dom variable with a discrete component at the origin like precipitation can be
written as (1) using

ψ(x) = F−1(Φ(x− µ)) (3)

where µ = −Φ−1 (P (Y = 0)) and F−1 denotes the quantile function (general-
ized inverse function of the cdf F ) of Y . Plugging a non-parametric estimate of
the quantile function F−1 in (3) allows building non-parametric estimates of
ψ, [? ]see, e.g.,¿lien2013effective, cecinati2017comparing. The dots in Figure 4
show the estimate obtained on the 6-minutes rainfall data in Brest introduced
in Section 2. The shape of ψ near zero is linked to the small precipitations.
A horizontal tangent at the origin means that they are more low rainfall than
expected low values in the censored Gaussian distribution and the density
becomes more concentrated in 0 if ψ is flatter at the origin. The growth speed
is linked to the upper tail: the convex-exponential shape indicates that the tail
is heavier than a Gaussian one. However, parametric approaches are generally
favoured in the applications and many models have been proposed for ψ in
the literature. The most classical one is probably the power transformation,
see [18] and [16],

ψ(x) = σx1/α, (4)

but other transformations have been proposed. [11] studied a quadratic power
function, [14] worked with a simple exponential transform and [12] focused on

ψ(x) = σ2(exp(σ1x
1/α)− 1). (5)
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Fig. 4 Non-parametric estimate of the anamorphosis function based on (3) (dots) for the
6-minutes data in Brest-Guipavas. The plain curve corresponds to the parametric model
(13) fitted to the data (see Section 4.1), and the dotted line is its 95% confidence interval
computed using 500 bootstrap samples.

To force the resulting distribution to match a specific distribution the inverse158

of a cdf can also be used, as it is the case with the Gamma distribution in [20].159

Transformation (4) being the most commonly used, it will be a point of160

comparison and will be referred to as the classical meta-Gaussian model. Note161

that it is closely related to the popular Box-Cox transformation [24].162

3.2 Lower and upper tails of meta-Gaussian models163

The choice of an appropriate anamorphosis function for a particular applica-164

tion is typically a trade-off between model complexity, versatility, tractability165

and interpretability. In this section, it is advocated that the properties of lower166

and upper tails of the positive part of the rainfall distribution may also provide167

interesting insights.168

Different studies have shown that rainfall at daily or sub-daily scales are
generally heavy tailed [27]. In this situation, ψ should be chosen such that the
transformed Gaussian variable defined by (1) is tail equivalent with a Pareto
distribution with positive shape parameter ξ. According to B, this holds true
if and only if

lim
x→∞

xψ(x)

ψ′(x)
=

1

ξ
. (6)

Solving the differential equation xψ(x)
ψ′(x) = 1

ξ leads to a first function x 7→ exp ξx2

2

which satisfies (6). Then, by re-writting ψ as

ψ(x) = exp
ξx2

2
expu(x) (7)

- which is always possible - condition (6) becomes169

lim
x→∞

u′(x)

x
= 0.
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This condition seems easier to work with as it allows understanding that loosely
speaking, the anamorphosis function ψ should increase ”like” the function

x 7→ exp ξx2

2 when x → +∞ to get heavy tailed distributions. In particular,
one can check that most of the anamorphosis found in the literature - including
the classical meta-Gaussian model (4) introduced previously - do not satisfy
condition (6). Hence, these transforms are not particularly well suited to model
heavy rainfall at small time scales. Interestingly, the model of [12] will be tail
equivalent to a Pareto distribution if and only if α = 1

2 in (5). The Tukey
g-and-h distribution, [33–35] [], defined as the random variable

exp(gX)− 1

g
exp

ξX2

2
, with X ∼ N (0, 1)

with h and g real parameters, may not always satisfy condition (6). In addition,170

it is not directly suited to include the dry event component at 0 and it lacks171

flexibility to describe the shape of the lower part of the rainfall distribution172

according to the discussion below.173

Concerning non zero but low rainfall, [31] advocated, using arguments of
the extreme value theory, that the lower part of the distribution of the positive
amount should approximately follow a power-law, i.e. satisfy

lim
y↓0

F (y)− F (0)

yα
= C

for some positive constant C and shape parameter α > 0. In particular, the
often used Gamma distribution with shape parameter α satisfies this con-
straint. These authors proposed and studied different families that meet this
criterion. One can wonder if this constraint could also be enforced to the meta-
Gaussian model defined by (2). A first order Taylor expansion of F around
zero indicates that condition (6) holds true if and only if

ψ(x) = x
1
αK(x) (8)

with K such that lim
x↓0

K(x) exists and is strictly positive. Most of the174

anamorphosis functions in the hydrological literature, including the classical175

meta-Gaussian model (4) correspond to the particular case where K(x) is a176

constant function, and consequently they obey this constraint on low rainfall177

amount. Remark that the same parameter α in model (5) both controls the178

shape of the distribution for low and heavy rainfall. This is an undesirable179

property as is not impossible to create a heavy-tailed distribution with a power180

shape parameter different from α = 1
2 for low rainfall.181

3.3 Proposed model182

According to the previous section, the anamorphosis ψ should be chosen such
that conditions (6) and (8) are satisfied in order to obtain a Meta-Gaussian
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distribution with a Pareto upper tail and a lower tail that follows a power
law. Based on these results, this paper advocates the use of the anamorphosis
function

ψ(x) = σx
1
α exp

ξx2

2
(9)

with µ ∈ R, σ ∈ R+∗, α ∈ R+∗ and ξ ∈ R. The distribution of the random
variable Y defined through (1) with X ∼ N (µ, 1) and ψ given by (9) will be
referred to as the GP meta-Gaussian distribution with parameter (µ, σ, α, ξ).
µ is directly related to the dry probability through (2) and σ is a multiplicative
scale parameter. ψ defined by (9) satisfies condition (8) and thus the lower tail
of the positive part of the distribution has a power shape with shape parameter
α. It also satisfy (6) and thus the upper tail distribution is controlled by the
shape parameter ξ. More precisely, if ξ > 0, the distribution is tail equivalent
with a Pareto distribution with shape parameter ξ. It implies in particular
that E[Y p] = +∞ if p > 1

ξ . The case ξ = 0 corresponds to the classical

meta-Gaussian model (4). Negative values for ξ creates an upper bound to
the distribution as for the GPD distribution. Indeed, when ξ < 0, ψ is strictly
monotonic increasing only on the interval (0, xsup) with

xsup =

√∣∣∣∣ −1

min(αξ, 0)

∣∣∣∣. (10)

The GP meta-Gaussian distribution is thus defined by applying (1) with ψ
given by (9) to the Gaussian variable X ∼ N (µ, 1) truncated at xsup. Remind
that truncation means that values above xsup are not observed - unlike the
censorship that is used to create the dry component, where the observations
above the bound take the value of the bound. The support of the distribution
is [0, ysup] with

ysup = σ

(
e−1

max(−αξ, 0)

) 1
2α

the upper bound in the precipitation domain. Note that when ξ ≥ 0 the bounds183

become xsup = ysup = +∞, so those notations can be used for ξ ∈ R. When184

the Gaussian is truncated above xsup, the cdf (2) must be corrected by the185

probability of truncation (see A).186

An advantage of the GP meta-Gaussian transformation over other trans-
formations which satisfy (6) and (8) is the possibility to derive an analytical
expression for the inverse of ψ

ψ−1(y) =

√
1

αξ
W

(
αξ
( y
σ

)2α)
(11)

where W denotes the Lambert W function [34] defined as the inverse of the187

function x 7→ x log x. Note that the Lambert W function is available in usual188

statistical software which simplifies practical implementation of the model.189



Springer Nature 2021 LATEX template

10 A meta-Gaussian distribution for sub-hourly rainfall

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

de
ns

ity

α=0.5, ξ=0.5     
α=0.5, ξ=0     
α=0.5, ξ=−0.1     

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

de
ns

ity

α=0.5, ξ=0.5     
α=0.2, ξ=0.5     
α=1.5, ξ=0.5     

Fig. 5 Probability density function of the GP meta-Gaussian distribution for different
parameter values. All the plots were obtained with µ = 0 and σ = 1. The left panel shows
the influence of ξ and the right panel the influence of α. The vertical dotted line on the
left plot corresponds to the upper bound ysup of the distribution with ξ = −0.1. Only the
positive part of the distribution is shown.

In particular, analytical expressions for the cdf and the probability density190

function (pdf) of the GP meta-Gaussian model can be derived from (2). This191

simplifies the computation of the likelihood function and the fitting the model192

to data (see Section 4.1 for more details). Analytical expressions for the finite193

moments can also be derived, which is not the case for many meta-Gaussian194

models that can be found in the literature (to the best of our knowledge the195

classical transform (4) is the only other meta-Gaussian model with analytical196

moments). Expressions for the pdf, cdf, quantile function and moments of the197

GP meta-Gaussian model can be found in A.198

Figure 5 illustrates the flexibility of the GP meta-Gaussian distribution199

with different parameter values. The distribution with µ = 0, σ = 1, α = 0.5200

and ξ = 0.5 is used as a reference since it corresponds to typical parameters201

values for the rainfall data considered in this study. The left panel shows that202

the parameter ξ influences the upper tail of the distribution whereas α modifies203

the shape of the distribution for low rainfall (see right panel) as expected from204

the theory.205

4 Numerical results206

4.1 Parameter estimation207

This section describes the method used to fit the model introduced in the208

previous section to the data. As discussed in Section 2 (see also Figure 2) the209

functioning of a tipping bucket induces a discretizaion of the data which needs210

to be taken into account.211
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For that, we assume that

P (N = n) = P (n ≤ Y < n+ δ) (12)

where Y is the (not observed) continuous rainfall, N represents the (observed)212

discrete measurement with values in {0, δ, 2δ, ...} and δ denotes the precision213

of tipping bucket, i.e. 0.2 mm for our data sets.214

Applying (12) with n = 0 gives

P (N = 0) = P (Y < δ)

and thus with the anamorphosis (9) the probability of having a dry mea-
surement depends not only on µ but also on the parameters {σ, α, ξ} of the
anamorphosis function. This creates additional dependence between the differ-
ent parameters and complicates the interpretation of the parameters. In order
to get round this difficulty, the definition of ψ is modified as follows

ψ(x) = δ + σx
1
α exp

ξx2

2
. (13)

Note that ψ−1 and ysup are consequently modified. We found that the intro-215

duction of δ in the anamorphosis function greatly improves the results obtained216

when fitting the model to the data sets considered in this study.217

In order to fit the GP meta-Gaussian model, the maximum likelihood
approach is used in this study. When fitting a continuous distribution model
to rain gauge data, the likelihood is usually computed directly from the con-
tinuous density. However it has been noticed that taking into account the
discretization significantly improves the results. More precisely, the discrete
log likelihood which is maximised is based on (12)

logL(θ) = n0 log(Φ(−µ)) +
∑

i: ni>0

log {F (ni + δ)− F (ni)} (14)

where n0 is the number of dry measurements, (n1, ..., nn) the rainfall data,218

θ = (µ, α, σ, ξ) the unknown parameter and F the cdf of the distribution of Y219

(which depends on θ).220

We found that the maximum likelihood estimates (MLE) obtained by max-
imising (14) over θ leads to estimates of α , σ and ξ which are strongly
correlated together. The dependence between the estimates of σ and ξ is not
surprising since it is well known that a similar behaviour occurs for the GPD
distribution: the MLE of the scale and shape parameters are strongly depen-
dent (see e.g. [36] and references therein). We also found a strong dependence
between the MLE of α and σ, even when fitting the classical model (4) where
ξ = 0. This is especially true when fitting the model to rainfall data at a sub-
hourly time-step: the discretization has a strong impact (see Figure 2) and
this may complicate the estimation of the lower-tail shape parameter α. The
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existence of this dependence between the different estimates complicates the
interpretation of the results. A usual method to overcome this problem (see e.g.
[37]) is to add a penalty term in the likelihood. After some experimentation,
we chose to maximise the following penalised log-likelihood function

log L̃(θ) = logL(θ)− (α− 0.5)2

τ2
.

It favours estimates with a shape parameter α close to 0.5 and the hyperparam-221

eter τ controls the strength of the penalty. In the numerical results reported222

below, the value τ2 = 0.001 is used.223

4.2 Results224

In order to assess the flexibility and interpretability of the proposed GP Meta-225

Gaussian model, it was fitted to the rainfall data at the 7 meteorological226

stations represented on the map of Figure 1. For each of these stations, differ-227

ent temporal resolutions varying from 6-minutes to one day were considered,228

where lower resolution data are obtained by accumulating 6-minutes data over229

a longer time interval. In order to reduce the short-term temporal dependence230

in the data sets, one observation every k observations was retained for the231

analysis. The value of k depends on the time step between successive observa-232

tions, ranging form k = 10 for 6-minutes data, to k = 5 for 12-minutes data,233

k = 2 for 30-minutes data, and k = 1 if the time step is larger than 1 hour.234

Figure 6 shows quantile-quantile plots for the fitted GP meta-Gaussian235

model at various time resolutions (6 minutes, 30 minutes, 1 hour and 1 day) for236

the 7 stations. The global fit of the model is very satisfying at all stations and237

time resolutions, except maybe for the smaller time steps in Lyon where the238

fitted model has difficulties in explaining the largest observation. It shows that239

the model is flexible enough to reproduce rainfall distributions for a variety of240

climates and temporal resolutions.241

The classical meta-Gaussian model with power transformation (4) was242

also fitted to the data for comparison. Remind that this model is a partic-243

ular case of the GP meta-Gaussian model when the upper-tail parameter ξ244

is assumed to be equal to 0. The resulting quantile-quantile plots are super-245

imposed on Figure 6. The fits are generally less satisfactory than with the246

GP meta-Gaussian model, in particular regarding the upper-tail of the dis-247

tribution where the power transformation leads to an underestimation of the248

largest quantiles. This is not surprising since we know from the results given249

in Section 3.2 that it is not possible to produce heavy-tailed distributions with250

this model whereas rainfall data generally have heavy tails.251

Figure 7 shows the evolution of the model parameters with time resolu-252

tion (note that the time axis is non linear). The evolution of the parameters253

is generally smooth. µ is increasing with aggregation, which is expected as254

there are less and less dry measurements when the period over which rainfall is255

accumulated increases. The estimate of the scale parameter σ is also generally256
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Fig. 6 Quantile-quantile plots for the GP (9) (blue) and power (4) (grey) meta-Gaussian
models fitted to the rainfall data. Each column corresponds to a different time resolution
and each row to a meteorological station. The light area gives (pointwise) 95% intervals
based on 500 non parametric bootstrap replicates.
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increasing, which is expected with the sum of (positively correlated) random257

variables. Remark however that there are some exceptions (e.g. Brest for larger258

time resolution) which may be due to the correlation between the estimates259

of σ and the other parameters. As concerns the upper tail parameter ξ, we260

generally obtain positive values (i.e. heavy-tailed distributions) but the evolu-261

tion with time resolution seems to be site-dependent. For Nimes, Villacoublay,262

Strasbourg and Lyon (top panels of Figure 7), the estimated tail parame-263

ter ξ is relatively high for 6-minutes data and then decreases when rainfall264

is accumulated over longer time intervals. This is coherent with the intuition265

that summing random variable will tend to ”gaussianize” them and produce266

distributions with lighter tails. However, for Nice, Montaigoual and Brest, a267

different behaviour is observed: the estimated tail parameter ξ is smaller for268

6-minutes data and does not clearly decrease with the time resolution. The269

evolution of the lower tail parameter α is also site dependent. At some stations270

(Lyon, Strasbourg, Nimes, Villacoublay and Brest) it tends to increase and271

then decrease with a maximum value reached for hourly data, whereas it is the272

opposite at Montaigoual. Remind that lower values of α lead to a distribution273

which is more more ”peaky” at the origin. The explanation behind this tempo-274

ral evolution is not straightforward. The rainfall accumulated over a given time275

period is the sum of a random number (because of the dry measurements) of276

correlated (because of the temporal dependence) random variables and hence277

it may have a complicated behaviour. It thus depends on the climate of the278

different stations, the characteristics of the rainy events in terms of intensity279

and duration impacting the distribution of the accumulated rainfalls.280

5 Conclusions and perspectives281

In this work, we propose a new meta-Gaussian distribution with four parame-282

ters that can handle heavy-tailed data with a discrete component at the origin.283

The proposed GP meta-Gaussian model is tractable and analytical expressions284

exist for the pdf, cdf, quantile function and for the moments.285

It was found that the model is flexible enough to describe the distribution286

of rainfall over a variety of climates and time resolutions. Comparison with a287

classical meta-Gaussian model shows what the proposed transform brings to288

this class of models: a better fit at small time scales due to its capacity to pro-289

duce heavy tails. The GP meta-Gaussian model is quite similar to the extended290

GP model [31] in terms of construction but also in terms of performance. The291

advantage of the meta-Gaussian model is its direct link with a Gaussian vari-292

able that allows the use of methods developed for Gaussian data (multivariate,293

spatiotemporal models, Kalman-like algorithm, etc.) and also the possibility294

to easily include the discrete component associated to dry conditions.295

It was also found that the parameters of the model evolves smoothly296

with temporal resolution. This could be useful for example to extrapolate the297

parameters and thus ”estimate” the distribution of the rainfall at unobserved298

time resolution. However, much works remain to be done to understand how299
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Fig. 7 Parameters estimates of the GP meta-Gaussian model fitted to the data at various
time resolution. Each column corresponds to a different parameter of the GP meta-Gaussian
and each row to a meteorological station. The boxplots are based on 500 non parametric
bootstrap replicates.
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the temporal dynamics of the dry and rainy events impacts the distribution300

of the rainfall accumulated at different temporal resolutions. This will be the301

topic of future work, with the aim to derive a temporal model compliant with302

the properties of rainfall at different time scales. Another possible extension303

is to adapt this meta-Gaussian distribution to spatial rainfall structures, in304

particular to improve regional frequency analysis, see e.g. [38] and [39].305

Appendix A Some Theoretical Properties of306

the GP Meta-Gaussian307

Distribution308

The density, cdf and quantile function of a meta-Gaussian model as defined in
(1) are

f(y) = c×
{
φµ
(
ψ−1(y)

)
/ψ′

(
ψ−1(y)

)
if y > 0

Φµ(0) if y = 0
,

F (y) = c×
{

Φµ(ψ−1(y)) if y > 0
Φµ(0) if y = 0

,

F−1(u) =

{
ψ(Φ−1µ (u/c)) if u > Φµ(0)
0 if u = Φµ(0)

,

with φµ and Φµ denoting respectively the pdf and cdf of a normal distribution309

with mean µ. c is the normalisation constant that deals with the probability310

of truncation when ξ < 0 with the GP meta-Gaussian transform. Hence c = 1311

for the classical transform (4), and for the GP meta-Gaussian transform312

(9) c = 1/Φµ(xsup), with xsup the upper bound in the Gaussian domain as313

defined in (10).314

315

An explicit expression of the moments was found for the GP meta-Gaussian
distribution when ξ ≥ 0. Let us write Y+ the wet measurements.

E(Y p+) =
1√

2π(1− Φ(−µ))

∫ +∞

0

ψ(x)p exp

{
−1

2
(x− µ)2

}
dx

=
σp√

2π(1− Φ(−µ))
exp

(
−µ

2

2

)∫ +∞

0

xp/α exp

{
−1− ξp

2
x2 + µx

}
dx

By identification in [40] (eq. 3.462.1, page 365), with γ = −µ, ν − 1 = p/α
and β = (1− ξp)/2,

E(Y p+) =
σp(1− ξp)− 1

2 (
p
α+1)

√
2π(1− Φ(−µ))

exp

{
µ2

2

(
1

2(1− ξp)
− 1

)}
Γ
( p
α

+ 1
)
D−( pα+1)

(
− µ√

1− ξp

)
Γ is the Gamma function and Dν can be expressed with Kummer’s confluent316

hypergeometric function of first kind [40], eq. 9.240, page 1028. This expression317

is valid if −α < p < 1/ξ.318
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Appendix B Pareto Tail for Meta-Gaussian319

Models320

Proposition 1. Let Z be any positive absolutely continuous random variable
with pdf fZ and with a Pareto survival function FZ . Let X be any standard-
ized normal distributed random variable, and let us define the positive random
variable

Y
d
= ψ(X),

where
d
= means equality in distribution and ψ(.) represents a continuous and

increasing function from the real line to [0,∞). The two random variables Z
and Y are tail-equivalent if and only if

lim
x→∞

xψ(x)

ψ′(x)
=

1

ξ
, (B1)

where ξ corresponds the common positive GP shape parameter of Z.321

Proof of Proposition 1: Let φ and Φ denote respectively the pdf and322

survival function of a standard normal distribution X.323

Recall that Z and Y are tail-equivalent, if and only

lim
y→∞

FZ(y)

P[Y > y]
= c ∈ (0,∞),

This condition is satisfied if they have the same tail index. Assuming a Pareto
tail with positive shape parameter ξ for Z implies that Z is regularly vary-
ing with index 1/ξ. Proposition A.3.8(b) from [41] recalled that this regular
variation type is equivalent to

lim
z→∞

z × fZ(z)

FZ(z)
=

1

ξ
.

Hence, to show that Y and Z are tail equivalent, one needs to determine under
which condition it can be written that

lim
z→∞

z × F (z)

FY (z)
=

1

ξ
.

where f and F denote the pdf and survival function of Y , respectively.324

By construction, the survival function of Y equals to

FY (z) = P[X > ψ−1(z)] = Φ
[
ψ−1(z)

]
,

The density of Y is

f(z) =
(
ψ−1(z)

)′
φ
[
ψ−1(z)

]
.
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Then one can write

z × f(z)

FY (z)
=
(
z × ψ−1(z)×

(
ψ−1(z)

)′)×( φ
[
ψ−1(z)

]
ψ−1(z)Φ [ψ−1(z)]

)
.

Mill’s ratio [41] tells us that the ratio in the last bracket goes to one as ψ−1(z)
goes to ∞ (i.e. as z grows). Hence, the condition

lim
z→∞

(
z × ψ−1(z)×

(
ψ−1(z)

)′)
=

1

ξ
, (B2)

is equivalent to

lim
z→∞

z × f(z)

FY (z)
=

1

ξ
.

This is equivalent to have tail equivalence between Z and Y .325

Changing variables with z = ψ(x), x = ψ−1(z) and
(
ψ−1(z)

)′
= dx/dz,326

condition (B2) is equivalent to condition (B1).327

This is the necessary and sufficient condition on ψ(.) to build a Pareto328

random variable of tail index ξ from a standardized normal random variable329

X.330
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sets.332

This work was supported by Eau du Ponant SPL, and took place in the333
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